Si consideri un sistema costituito dal processore D-RISC sequenziale (quello dell'interprete firmware) e dotato di una gerarchia di memoria che comprende un'unico livello di cache, comune per dati e istruzioni, set associativa su insiemi (4 linee per insieme), con σ = 16 e 1K insiemi. La memoria principale è modulare, interallacciata, con 4 moduli da 1G parole ciascuno e τ_{M} =400 τ (con τ ciclo di clock della CPU). Il t_{tr} fra memoria principale e cache è pari a 4τ .

Si consideri quindi il codice D-RISC che deriva dalla compilazione dello pseudo codice

```
int N = 1024, A[N], B[N], C[N];
for(int i=0; i<N; i++)
{
    if(A[i] == B[i]) C[i] = A[i]*4;
    else C[i] = A[B[i]%N]*2;
}
```

e si calcolino:

- la compilazione in assembler DRISC
- il numero di fault generati dal programma
- la traccia degli indirizzi generati dal programma e quelli utilizzati per l'accesso alla cache durante la prima iterazione del for, indicando per ciascun indirizzo il numero di insieme nella cache
- il tempo di completamento della prima iterazione, assumendo che A[0] sia diverso da B[0]

assumendo che:

- i vettori A, B e C e il codice siano allocati rispettivamente dal compilatore agli indirizzi 1K, 2K, 3K e 0
- che le pagine in memoria centrale e le pagine logiche siano di 2K parole
- che tabril[] = {<12,1>,<6,1>,<24,1>,<1,1>,...} dove ogni coppia è data da <IPF, bit di presenza>

Commenti:

- → per semplicità, si assume N potenza di 2 (N=1024)
- → Compilazione del codice -> standard. C'è da ricordarsi che la moltiplicazione e l'operazione di modulo sono per potenze di due dunque vanno fatte con gli shift.

Codice

La compilazione con le regole standard produce il codice:

CLEAR Ri (ADD RO,RO,Ri)

loop: LOAD Rba, Ri, Rai

LOAD Rbb, Ri, Rbi

IF= Rai, Rbi, then

else: AND Rbi, #1023, Rind // operazione modulo 1024: 1023=0...01111111111

// quindi si ottengono gli ultimi 10 bit di Rbi

LOAD Rba, Rind, Rai

SHL Rai, #1, Rai // = *2: quel valore di Rai non si userà più e si può modificare

STORE Rbc, Ri, Rai

GOTO cont

then: SHL Rai, #2, Rai //= *4: quel valore di Rai non si userà più e si può modificare

STORE Rbc, Ri, Rai

cont: INC Ri

IF< Ri, RN, loop

END

Numero di fault

L'accesso ai vettori è:

per B e C sequenziale, senza riuso, per A random o sequenziale.

Utilizzando il flag "prefetch" per B e C abbiamo il solo fault iniziale (quindi 1+1: senza prefetch sarebbero $N/\sigma+N/\sigma$),

mentre per A dovremmo prevedere comunque N/σ faults, per l' istruzione A[B[i] % N] (caso peggiore).

Però, se si verificasse un fault per un accesso ad A non ancora toccato dagli accessi sequenziali per il test della condizione (cioè se B[i]%N>i), il fault non verrebbe ripetuto quando si arriva a tale linea di cache per l'esecuzione di IF=,

perchè la capacità complessiva della cache (1K insiemi da 4 linee contenenti 16 parole =4K linee=64K parole) è sufficiente a contenere tutto il vettore A, oltre alla singola linea di B e C nel working set, ed al codice.

Ma non è il caso pessimo e non lo consideriamo.

Il **codice**, dopo il fault iniziale (cioè 1), non ne produrrà altri, utilizzando il prefetch (sono 14 istruzioni).

Il tempo di completamento deve tener conto di #fault * T_{fault} . Quest'ultimo sarà dato dalla solita formula $2(\tau + T_{tr}) + \sigma t_{M}/m$.

Quindi, in totale il numero dei faults è:

 $3+N/\sigma = 67$

Traccia degli indirizzi

Gli indirizzi generati saranno quelli tradotti dalla **tabril**: entra tutto in due pagine = 4K parole (ne usiamo 3K+14) => si usano solo le pagine IPF = 12 e IPF = 6.

La traccia degli indirizzi logici generati dal programma per la prima iterazione è la seguente:

Gli indirizzi fisici corrispondono ad indirizzi logici ricavati mediante la tabella di rilocazione. Le **pagine** sono da **2K** parole, quindi **codice** e vettore **A** sono nella **prima** pagina logica e quindi nella pagina fisica con **IPF = 12** (come da tabril), mentre i vettori **B** e **C** sono nella seconda pagina logica e vengono mappati nella pagina fisica con **IPF = 6**.

							_	ta	g		_	_	_	_			Т				#i	nsi	em	e		_	\neg	_	offs	et	\neg	indirizzo cache	
T	Ť								Ť								+										-						-
		_	_		_	_	_	_	_	IPF	_	_	_	_		_		_	_	\exists			_	offs	et	di p	agi	na	_	_	\neg	indirizzo fisico	
Ī	Т																			7													
				_	_	_	_	_	_	IPL	_	_	_	_						T	offset di pagir						agi	ina			\neg	indirizo logico	
Т	Т																			7													1
T	T																																
Ι																																	
I	I																																
					_	_	_	_		0	_		_							لِ				_		0				_		<0,0>	Logico
)	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
_										0										4						0				_		<12.0>	Fining
	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	1	1	0	_	0	0	0	0	0	_	0	0	0	0		<12,0>	Fisico
-	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1	1	0	U	U	U	U	U	U	U	U	U	U	U	U		-
+	-	_	_		_	_	_	ta	9		_	_	_	_		_	+	_	_		#i	nsie	e m	e	_	_	\neg	۲,	offs	et	\neg		Cache
T																	4	1	0	0					0	0	0				_	512	Set
t	+	7		7	H	Ħ	H	=	H	H	H	Н	-			7	+	+	+									۲	7	H			
t	\dagger	1			П	П		T	П		T	H		П				\forall	7						П				П				
Ť	Ť	1			П	T			П		٦						T	T	T	T		T		T		T		٦					
				_		_	_		_	0		_								T	_			_		0		_		_	\neg	<0,1024>	Logico
)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0		
										Ц																					Ц_		
	0	0	0	0	0	0	0	0		0	0	_	0	-	Ô	0	-	41	0	ب	4	0	0	0		0	0	0	0	0		<12,1024>	Fisico
,	U	U	U	U	U	U	U	0	U	U	U	0	U	U	U	U	1	1	U	U	1	U	U	U	U	U	U	U	U	U	U		-
_	_				_		_	ta	σ.			_	_				+	_			#;	nsi	a m	_			-	4	offs	et	_		Cache
_	_	-		_	_	_	_		5		_		_				_	1	0	0					0	0	0	-	0113	e t		576	Set
+	+	+		-	H	+	H	-	H		H	Н			-	+	+	1			-			•				+	+	H		370	
t	Ť	T		T	П	T		T	H		T	Ħ				T	T	╗	7	T				T	Ħ			T		T			
								. ,,																									
							_	_	_	0	_									ᆜ				_		0	_			_		<1,0>	Logico
)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0		
										Ĺ										4											_	14.05	Fieles
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	1	1	ᆚ	0	0	0	0	0	0	0	0	0	0		<6,0>	Fisico
1	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1	1	U	U	U	U	U	U	U	U	U	U	U	U		
																	4				,,,						4			Ļ			0 1
	_							ta	9								- 1				#1	nsie	e m	e			- 1	- (offs	et			Cache

la traccia degli **indirizzi fisici** generati verso la cache dalla MMU sarà (considerando solo la parte iniziale per semplicità):

```
set=512, offset=0, tag=1
set=512, offset=0, tag=1
set=576, offset=0, tag=0
```

•••

gli accessi in cache considerano i 32 bit dell'indirizzo fisico come (dai bit meno significativi a quelli più significativi):

- > 4 bit di offset
- > 10 bit di numero di blocco
- > 18 bit di tag

Tempo di completamento prima iterazione

La prima iterazione esegue (ramo else) 3 LOAD, 1 STORE, 2 IF, 1 GOTO e 3 aritmetico logiche corte. Complessivamente fanno $37\tau+14ta$:

		Техе	ес	CH0	, CH1	Totale		
	#	τ	t _a	τ	t _a	τ	t _a	
LOAD	3	2	1	2	1	12	6	
STORE	1	3	1	2	1	5	2	
SALTI COND	2	2	0	2	1	8	2	
SALTI INCOND	1	1	0	2	1	3	1	
ARIT LOG CORTE	3	1	0	2	1	9	3	

Tot 37 14

+ i tempi necessari per i **fault** relativi al **codice**, ad **A[0]** a **B[0]**, ad **A[B[i]%N]** (probabilmente non risolto con la stessa linea che contiene A[0]) e (in sola scrittura), a **C[0]** (trascurabile rispetto agli altri), che in **totale** costano

$$4*(2(\tau + T_{tr}) + (\sigma \tau_{M})/m)=4*(2(\tau + 4\tau) + (16*400\tau)/4)=4(10\tau + 1600\tau) =$$

= $4*1610 \tau = 6440 \tau$

e quindi il tempo di completamento della prima iterazione sarà

$$37\tau + 14ta + 6440 \tau$$

con ta=tempo di accesso in cache di primo livello, sarà di 2 o 3 τ a seconda del modo scelto per implementare la cache set associativa (1 o 2 τ + 1 τ per la MMU), il tempo complessivo sarà (cache set associativa con accesso in 1 τ + 1 τ per la MMU)

$$6440 \tau + 14 (2 \tau) + 37 \tau = 6505 \tau$$